
HDL Coder™
Getting Started Guide

R2020a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

HDL Coder™ Getting Started Guide
© COPYRIGHT 2012–2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2012 Online only New for Version 3.0 (Release 2012a)
September 2012 Online only Revised for Version 3.1 (Release 2012b)
March 2013 Online only Revised for Version 3.2 (Release 2013a)
September 2013 Online only Revised for Version 3.3 (Release 2013b)
March 2014 Online only Revised for Version 3.4 (Release 2014a)
October 2014 Online only Revised for Version 3.5 (Release 2014b)
March 2015 Online only Revised for Version 3.6 (Release 2015a)
September 2015 Online only Revised for Version 3.7 (Release 2015b)
October 2015 Online only Rereleased for Version 3.6.1 (Release 2015aSP1)
March 2016 Online only Revised for Version 3.8 (Release 2016a)
September 2016 Online only Revised for Version 3.9 (Release 2016b)
March 2017 Online only Revised for Version 3.10 (Release 2017a)
September 2017 Online only Revised for Version 3.11 (Release 2017b)
March 2018 Online only Revised for Version 3.12 (Release 2018a)
September 2018 Online only Revised for Version 3.13 (Release 2018b)
March 2019 Online only Revised for Version 3.14 (Release 2019a)
September 2019 Online only Revised for Version 3.15 (Release 2019b)
March 2020 Online only Revised for Version 3.16 (Release 2020a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

About HDL Coder
1

HDL Coder Product Description . 1-2
Key Features . 1-2

HDL Language Support and Supported Third-Party Tools and Hardware
. 1-3

VHDL and Verilog Language Support . 1-3
Third-Party Synthesis Tools and Version Support . 1-3
FPGA-in-the-Loop Hardware . 1-3
Simulink Real-Time FPGA I/O: Speedgoat Target Hardware 1-4
Generic ASIC/FPGA Hardware . 1-4
IP Core Generation Hardware . 1-5
FPGA Turnkey Hardware . 1-5

Getting Started with HDL Coder
2

Tool Setup . 2-2
Synthesis Tool Path Setup . 2-2
HDL Simulator Setup . 2-3
Xilinx System Generator Setup for ModelSim Simulation 2-3
Altera DSP Builder Setup . 2-4
FPGA Simulation Library Setup . 2-4
C/C++ Compiler Setup . 2-5

Tutorials
3

Create Simulink Model for HDL Code Generation 3-2
Open Model and HDL Coder Library . 3-2
Develop Design and Test Bench . 3-4
Simulate and Verify Functionality of Design . 3-5
Check Model for HDL Compatibility . 3-6

Check HDL Compatibility of Model Using HDL Code Advisor 3-7
Simple Up Counter Model . 3-7
Open the HDL Code Advisor . 3-8
How to Run Checks In the HDL Code Advisor . 3-8
Run Checks for Counter Model . 3-9

iii

Contents

Fix HDL Code Advisor Warnings or Failures . 3-10
Caveats . 3-12
Generate HDL Code . 3-12

Generate HDL Code from Simulink Model . 3-13
Simple Up Counter Model . 3-13
Generate HDL Code . 3-14
View HDL Code Generation Files . 3-15
Verify Generated HDL Code . 3-16

Verify Generated Code from Simulink Model Using HDL Test Bench . . . 3-17
Simple Up Counter Model . 3-17
How to Verify the Generated Code . 3-18
What is a HDL Test Bench? . 3-18
Generate HDL Test Bench . 3-18
View HDL Test Bench Files . 3-20
Run Simulation and Verify Generated HDL Code 3-20
Deploy Generated HDL Code on Target Device . 3-21

HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow
Advisor . 3-22

Simple Up Counter Model . 3-22
About HDL Workflow Advisor . 3-23
Set Up Tool Path . 3-23
Open the HDL Workflow Advisor . 3-24
Generate HDL Code . 3-24
Perform FPGA Synthesis and Analysis . 3-26
Run Workflow at Command Line with a Script . 3-26

iv Contents

About HDL Coder

• “HDL Coder Product Description” on page 1-2
• “HDL Language Support and Supported Third-Party Tools and Hardware” on page 1-3

1

HDL Coder Product Description
Generate VHDL and Verilog code for FPGA and ASIC designs

HDL Coder generates portable, synthesizable VHDL® and Verilog® code from MATLAB® functions,
Simulink® models, and Stateflow® charts. The generated HDL code can be used for FPGA
programming or ASIC prototyping and design.

HDL Coder provides a workflow advisor that automates the programming of Xilinx®, Microsemi®, and
Intel® FPGAs. You can control HDL architecture and implementation, highlight critical paths, and
generate hardware resource utilization estimates. HDL Coder provides traceability between your
Simulink model and the generated Verilog and VHDL code, enabling code verification for high-
integrity applications adhering to DO-254 and other standards.

Support for industry standards is available through IEC Certification Kit (for ISO 26262 and IEC
61508).

Key Features
• Target-independent, synthesizable VHDL and Verilog code
• Code generation support for MATLAB functions, System objects and Simulink blocks
• Mealy and Moore finite-state machines and control logic implementations using Stateflow
• Workflow advisor for programming Xilinx, Microsemi, and Intel application boards
• Resource sharing and retiming for area-speed tradeoffs
• Code-to-model and model-to-code traceability for DO-254
• Legacy code integration

1 About HDL Coder

1-2

https://www.mathworks.com/products/iec-61508.html

HDL Language Support and Supported Third-Party Tools and
Hardware

In this section...
“VHDL and Verilog Language Support” on page 1-3
“Third-Party Synthesis Tools and Version Support” on page 1-3
“FPGA-in-the-Loop Hardware” on page 1-3
“ Simulink Real-Time FPGA I/O: Speedgoat Target Hardware” on page 1-4
“Generic ASIC/FPGA Hardware” on page 1-4
“IP Core Generation Hardware” on page 1-5
“FPGA Turnkey Hardware” on page 1-5

VHDL and Verilog Language Support
The generated HDL code complies with the following standards:

• VHDL-1993 (IEEE® 1076-1993)
• Verilog-2001 (IEEE 1364-2001)

Third-Party Synthesis Tools and Version Support
The HDL Workflow Advisor is tested with the following third-party FPGA synthesis tools:

• Intel Quartus Prime 18.1
• Intel Quartus Pro 19.2
• Xilinx Vivado® Design Suite 2019.1
• Microsemi Libero® SoC 11.8
• Xilinx ISE 14.7

To use third-party synthesis tools with HDL Coder, a supported synthesis tool must be installed, and
the synthesis tool executable must be on the system path. For details, see “Tool Setup” on page 2-
2.

FPGA-in-the-Loop Hardware
The FPGAs supported for FPGA-in-the-loop simulation with HDL Verifier™ are listed in the HDL
Verifier documentation.

You can also add custom FPGA boards using the FPGA Board Manager. See “FPGA Board
Customization” for details.

For FPGA-in-the-Loop or Customization for USRP® Device using the HDL Workflow Advisor, a
supported synthesis tool must be installed, and the synthesis tool executable must be on the system
path. For details, see “Tool Setup” on page 2-2.

 HDL Language Support and Supported Third-Party Tools and Hardware

1-3

Simulink Real-Time FPGA I/O: Speedgoat Target Hardware
Speedgoat I/O
Module

FPGA Device Synthesis Tool

IO342 Xilinx Kintex
UltraScale

Warning Speedgoat IO331 and its variant Speedgoat
IO331-6 will no longer be supported in R2020b with the
Simulink Real-Time FPGA I/O workflow. You can still run the
workflow for these IO modules in R2020a. In R2020b, use
Speedgoat IO333-325K or a later Speedgoat IO module that is
based on Xilinx Vivado.

For more information and to learn about the synthesis tool
requirements, see Xilinx HDL Support with Speedgoat IO Modules.

IO333, IO334,
IO335

Xilinx Kintex-7

IO332, IO397 Xilinx Artix-7
IO323, IO331 Xilinx

Spartan-6

Generic ASIC/FPGA Hardware
The following hardware is supported for the Generic ASIC/FPGA workflow:

Synthesis Tool Device Family
Xilinx Vivado Kintex7

Artix7
Kintex UltraScale+
KintexU
Spartan7
Virtex UltraScale+
Virtex7
VirtexU
Zynq
Zynq UltraScale+

Xilinx ISE Virtex6
Virtex5
Virtex4
Spartan-3A DSP
Spartan 3E
Spartan3
Spartan6

Altera® Quartus® II Cyclone® III
Cyclone IV
Arria® II GX and GZ
Stratix® IV
Stratix V

1 About HDL Coder

1-4

https://www.speedgoat.com/help/page/configuration/refentry_host_software_installation#refsect1_xilinx_hdl_software

Synthesis Tool Device Family
Cyclone III
Arria 10
Arria V GX
MAX 10

Intel Quartus Pro Arria 10
Cyclone 10 GX
Stratix 10

Microsemi Libero SoC SmartFusion2 SoC
RTG4
IGLOO2

IP Core Generation Hardware
The following hardware is supported for the IP Core Generation workflow:

Synthesis Tool Target Platform
Xilinx Vivado ZedBoard and with FMC-HDMI-CAM and

FMCOMMS2/3/4/
ZC706 and with FMC-HDMI-CAM and
FMCOMMS2/3/4/ and FMCOMMS5
ZC702 with FMC-HDMI-CAM
Zynq ZC706 evaluation kit
Zynq ZC702 evaluation kit
PicoZed FMC-HDMI-CAM
Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit

Altera Quartus II Arria 10 SoC development kit
Cyclone V SoC development kit Rev. C and Rev. D
Arrow DECA Max 10 FPGA development board
Arrow SoCKit development board
Arria 10 GX FPGA development kit

FPGA Turnkey Hardware
The following hardware is supported for the FPGA Turnkey workflow:

• Altera Arria II GX FPGA development kit
• Altera Cyclone III FPGA development kit
• Altera Cyclone IV GX FPGA development kit
• Altera DE2–115 development and education board
• XUP Atlys Spartan-6 development board

 HDL Language Support and Supported Third-Party Tools and Hardware

1-5

• Xilinx Spartan-3A DSP 1800A development board
• Xilinx Spartan-6 SP605 development board
• Xilinx Virtex-4 ML401 development board
• Xilinx Virtex-4 ML402 development board
• Xilinx Virtex-5 ML506 development board
• Xilinx Virtex-6 ML605 development board

For FPGA development boards that have more than one FPGA device, only one such device can be
used with FPGA Turnkey.

Supported FPGA Device Families for Board Customization

You can also add custom FPGA boards using the FPGA Board Manager. HDL Coder supports the
following FPGA device families for board customization; that is, when you create your own board
definition file. See “FPGA Board Customization” (HDL Verifier).

Device Family
Xilinx Kintex7

Artix7
Spartan-3A DSP
Spartan3
Spartan3A and Spartan3AN
Spartan3E
Spartan6
Virtex4
Virtex5
Virtex6
Virtex7

Altera Cyclone III
Cyclone IV
Arria II
Stratix IV
Stratix V

See Also

More About
• “Tool Setup” on page 2-2

1 About HDL Coder

1-6

Getting Started with HDL Coder

2

Tool Setup
In this section...
“Synthesis Tool Path Setup” on page 2-2
“HDL Simulator Setup” on page 2-3
“Xilinx System Generator Setup for ModelSim Simulation” on page 2-3
“Altera DSP Builder Setup” on page 2-4
“FPGA Simulation Library Setup” on page 2-4
“C/C++ Compiler Setup” on page 2-5

Synthesis Tool Path Setup
• “hdlsetuptoolpath Function” on page 2-2
• “Add Synthesis Tool for Current HDL Workflow Advisor Session” on page 2-2
• “Check Your Synthesis Tool Setup” on page 2-2
• “Supported Tool Versions” on page 2-3

hdlsetuptoolpath Function

To use HDL Coder with one of the supported third-party FPGA synthesis tools, add the tool to your
system path using the hdlsetuptoolpath function. Add the tool to your system path before opening
the HDL Workflow Advisor. If you already have the HDL Workflow Advisor open, see “Add Synthesis
Tool for Current HDL Workflow Advisor Session” on page 2-2.

Add Synthesis Tool for Current HDL Workflow Advisor Session

Simulink to HDL Workflow

1 At the MATLAB command line, use the hdlsetuptoolpath function to add the synthesis tool.
2 In the HDL Workflow Advisor, in the Set Target > Set Target Device and Synthesis Tool step,

to the right of Synthesis tool, click Refresh.

The synthesis tool is now available.

MATLAB to HDL Workflow

1 At the MATLAB command line, use the hdlsetuptoolpath function to add the synthesis tool.
2 In the HDL Workflow Advisor, in the Select Code Generation Target step, to the right of

Synthesis tool, click Refresh list.

The synthesis tool is now available.

Check Your Synthesis Tool Setup

To check your Altera Quartus Prime synthesis tool setup in MATLAB, try launching the tool with the
following command:

!quartus

2 Getting Started with HDL Coder

2-2

To check your Intel Quartus Pro synthesis tool setup in MATLAB, try launching the tool with the
following command:

!qpro

To check your Xilinx Vivado synthesis tool setup in MATLAB, try launching the tool with the following
command:

!vivado

To check your Xilinx ISE synthesis tool setup in MATLAB, try launching the tool with the following
command:

!ise

To check your Microsemi Libero SoC synthesis tool setup in MATLAB, try launching the tool with the
following command:

!libero

Supported Tool Versions

For supported tool versions, see “Third-Party Synthesis Tools and Version Support” on page 1-3.

HDL Simulator Setup
To open the HDL simulator from MATLAB, enter these commands:

MATLAB Command to Open HDL Simulator

HDL Simulator Command to Open the Simulator
Cadence Incisive® nclaunch
Mentor Graphics® ModelSim® vsim

For example, to open the Mentor Graphics ModelSim simulator, enter this command:
vsim('vsimdir','C:\Program Files\ModelSim\questasim\10.5c\win64\vsim.exe')

To learn more about how to set up ModelSim, Questa®, or Incisive® for HDL simulation, or for
cosimulation with HDL Verifier, see “HDL Simulator Startup” (HDL Verifier).

Add Simulation Tool for Current HDL Workflow Advisor Session

MATLAB to HDL Workflow

1 Set up your simulation tool.
2 In the HDL Workflow Advisor, in the HDL Verification > Verify with HDL Test Bench task,

click Refresh list.

The simulation tool is now available.

Xilinx System Generator Setup for ModelSim Simulation
To generate ModelSim simulation scripts for a design containing Xilinx System Generator blocks, you
must:

 Tool Setup

2-3

• Have compiled Xilinx simulation libraries.
• Specify the path to your compiled libraries.

Required Libraries for Vivado and ISE

To generate ModelSim simulation scripts, you must have the following compiled Xilinx simulation
libraries for your EDA simulator and target language:

• unisim
• simprim
• xilinxcorelib

To learn how to compile these libraries, refer to the Xilinx documentation.

• For Vivado, see compile_simlib.
• For ISE, see compxlib.

Specify Path to Required Libraries

Specify the path to your compiled Xilinx simulation libraries by setting the
XilinxSimulatorLibPath parameter for your model.

For example, you can use hdlset_param to set XilinxSimulatorLibPath:

libpath = '/apps/Xilinx_ISE/XilinxISE-13.4/Linux/ISE_DS/ISE/vhdl/
 mti_se/6.6a/lin64/xilinxcorelib';
hdlset_param (bdroot, 'XilinxSimulatorLibPath', libpath);

Altera DSP Builder Setup
To generate code for a design containing both Altera DSP Builder and Simulink blocks, you must open
MATLAB with Altera DSP Builder. For details, refer to the Altera DSP Builder documentation.

FPGA Simulation Library Setup
To map your design to an Altera or a Xilinx FPGA simulator library:

• Use Xilinx LogiCORE® IP Floating-Point Operator v5.0 or Altera floating-point megafunction IP
cores.

• Specify the compiled simulation library and the target language for your EDA simulator. Use
XilinxCoreLib simulation library for Xilinx LogiCORE IP and the EDA simulation library
compiler for Altera megafunction IP.

To learn how to compile this library, refer to the Xilinx compxlib documentation .
• Specify the path to your compiled Altera or Xilinx simulation libraries. Altera provides the

simulation model files in \quartus\eda\sim_lib folder. Set the SimulationLibPath parameter
for your DUT.

For example, you can use hdlset_param to set SimulationLibPath:

myDUT = gcb;
libpath = '/apps/Xilinx_ISE/XilinxISE-13.4/Linux/ISE_DS/ISE/vhdl/

2 Getting Started with HDL Coder

2-4

 mti_se/6.6a/lin64/xilinxcorelib';
hdlset_param (myDUT, 'SimulationLibPath', libpath);

You can also specify the simulation library path from the HDL Code Generation > Test Bench
pane in the Configuration Parameters dialog box.

C/C++ Compiler Setup
HDL Coder locates and uses a supported installed compiler. For most platforms, a default compiler is
supplied with MATLAB. For a list of supported compilers, see at https://www.mathworks.com/support/
compilers/current_release/.

See Also

More About
• “Third-Party Synthesis Tools and Version Support” on page 1-3

 Tool Setup

2-5

https://www.mathworks.com/support/compilers.html
https://www.mathworks.com/support/compilers.html

Tutorials

• “Create Simulink Model for HDL Code Generation” on page 3-2
• “Check HDL Compatibility of Model Using HDL Code Advisor” on page 3-7
• “Generate HDL Code from Simulink Model” on page 3-13
• “Verify Generated Code from Simulink Model Using HDL Test Bench” on page 3-17
• “HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor”

on page 3-22

3

Create Simulink Model for HDL Code Generation
In this section...
“Open Model and HDL Coder Library” on page 3-2
“Develop Design and Test Bench” on page 3-4
“Simulate and Verify Functionality of Design” on page 3-5
“Check Model for HDL Compatibility” on page 3-6

HDL Coder can generate VHDL and Verilog code from MATLAB code, Simulink models, and Stateflow
charts. You can then verify that the generated code matches your original algorithm, and deploy it on
the target hardware.

This example illustrates how you can create a Simulink model for HDL code generation. The model is
a simple up counter algorithm that wraps back to zero after it reaches the upper limit that you
specify.

Open Model and HDL Coder Library
1

Start MATLAB. From the MATLAB toolstrip, click the Simulink button . Then, in the HDL
Coder section, select the Blank DUT template.

Selecting this template opens a Simulink model that is preconfigured for HDL code generation.
Save the model with a file name such as hdlcoder_simple_up_counter.slx in a working
folder that is writable.

When you create a model for HDL code generation, you partition the model into a Design-Under-
Test (DUT) and a test bench. The DUT is a Subsystem that is mostly at the top level of your

3 Tutorials

3-2

model, and contains the algorithm for which you generate HDL code. Blocks outside this
Subsystem form the test bench, and contains inputs to the Subsystem and output values that are
logged. The test bench ensures that the DUT functionality is as expected.

For the test bench, you can use blocks that are not supported for HDL code generation. In the
Blank DUT template, the model has a HDL_DUT Subsystem that corresponds to the DUT.
Blocks outside the HDL_DUT Subsystem form the test bench.

2 Open the HDL Coder Block Library for designing your counter algorithm. To filter the Simulink
Library Browser to show block libraries that support HDL code generation, in the Apps tab,
select HDL Coder. The HDL Code tab appears. Select HDL Block Properties > Open HDL
Block Library.

In the HDL Coder library, you see several blocks that are pre-configured for HDL code
generation. Blocks in this library are available with Simulink. If you do not have HDL Coder, you
can simulate the blocks in your model, but cannot generate HDL code.

You can find additional HDL-supported blocks in these block libraries:

• DSP System Toolbox HDL Support
• Communications Toolbox HDL Support
• Vision HDL Toolbox
• Wireless HDL Toolbox

 Create Simulink Model for HDL Code Generation

3-3

To restore the Library Browser to the default view, in the Library Browser, click the button.

Alternatively, at the MATLAB command-line, enter:

hdllib('off')

Note The set of supported blocks tend to change each release. Rebuild your supported blocks
library each time you install a new version of this product.

Develop Design and Test Bench
1 Double-click the HDL_DUT Subsystem. Drag blocks from the HDL Coder library and add them

to your model. This table illustrates the blocks to add to your model for designing the up counter.
To learn about what a block does, and to specify the block parameters for that block, double-click
the block.

Block Library Number of
Blocks

Block Parameters

Constant Sources 2 • Constant values: 1 and 0
• Output data type: uint32

Switch Signal Routing 2 Criteria for passing first
input: u2 > Threshold

Delay Discrete 2 Delay length: 1
Add Math Operations 1 Accumulator data type:

Inherit: Same as first input
Relational Operator Logic and Bit

Operations
1 Relational operator: >

2 Rename the input ports In1 and In2 to count_threshold and Enable respectively. Place the
blocks in your model and connect them as shown in figure.

3 Tutorials

3-4

The Enable signal specifies whether the counter should count upwards from the previous value.
When the Enable signal is logic high, the counter counts up from zero to the count_threshold
value. When the value of out becomes equal to the count_threshold value, the counter wraps
back to zero and starts counting again. When the Enable signal becomes logic low, the counter
holds the previous value.

3 Navigate to the top level of the model and change the input settings.

• Constant block input to count_threshold: This input decides the maximum value up to
which the counter should count. This example illustrates how to design a 4-bit up counter.
Therefore, set the Constant value to 15 (2^4 - 1), and set the Output data type to uint32.

Note Make sure that the output data type of this Constant block matches the output data
type of the Constant blocks inside the HDL_DUT Subsystem.

• Counter Free-Running block input to Enable: For this example, remove the Counter Free-
Running block. Replace this block with a Constant block that has a value of 1 and Output
data type set to boolean.

This figure shows the top level of your model after you have applied these settings.

To learn more about how to create a model, see “Create a Simple Model” (Simulink).

Simulate and Verify Functionality of Design

Simulate your model by pressing the button. To see the simulation results, open the Scope block
at the top level of your model. The simulation results display the Enable signal at the top generating
a constant value of 1 and the out signal counting from 0 to 15, then wrapping back to zero, and then
counting up again. This figure displays the waveform of the output signal out.

 Create Simulink Model for HDL Code Generation

3-5

Check Model for HDL Compatibility
You have now simulated the model and verified the functionality of your design. Before you generate
HDL code, you must verify that the model settings are compatible for HDL code generation. To make
your design compatible for HDL code generation, you use the HDL Code Advisor. To learn how to use
the HDL Code Advisor, see “Check HDL Compatibility of Model Using HDL Code Advisor” on page 3-
7.

See Also
checkhdl | hdllib | hdlmodelchecker | hdlsetup

More About
• “Use Simulink Templates for HDL Code Generation”
• “Generate HDL Code from Simulink Model” on page 3-13
• “Verify Generated Code from Simulink Model Using HDL Test Bench” on page 3-17
• “HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor” on page 3-

22

3 Tutorials

3-6

Check HDL Compatibility of Model Using HDL Code Advisor
In this section...
“Simple Up Counter Model” on page 3-7
“Open the HDL Code Advisor” on page 3-8
“How to Run Checks In the HDL Code Advisor” on page 3-8
“Run Checks for Counter Model” on page 3-9
“Fix HDL Code Advisor Warnings or Failures” on page 3-10
“Caveats” on page 3-12
“Generate HDL Code” on page 3-12

Before you can generate HDL code, it is recommended that you verify the compatibility of your
algorithm modeled in Simulink for HDL code generation. To verify model compatibility, you use the
HDL Code Advisor. The HDL Code Advisor verifies and updates your Simulink model or subsystem for
compatibility with HDL code generation. The Code Advisor checks for model configuration settings,
ports and subsystem settings, block settings, support for native floating point, and conformance to
the industry-standard rules. The Code Advisor produces a report that lists suboptimal conditions or
settings, and then proposes better model configuration settings.

This example shows how you can update a simple up counter model for HDL compatibility. To learn
more about the counter algorithm and how you can create this model, see “Create Simulink Model for
HDL Code Generation” on page 3-2.

Simple Up Counter Model
Open this model to see a simple up counter. The model counts up from zero to a threshold value and
then wraps back to zero. In this model, the threshold value is set to 15. You can change the threshold
value by changing the value of the Constant block that is input to the count_threshold port. The
Enable signal specifies whether the counter should count up or hold the previous value. The Enable
signal is set to 1 which means that the counter counts upwards continuously.

open_system('hdlcoder_simple_up_counter.slx')
set_param('hdlcoder_simple_up_counter', 'SimulationCommand', 'Update')

 Check HDL Compatibility of Model Using HDL Code Advisor

3-7

Open the HDL Code Advisor
To open the HDL Code Advisor, in the Apps tab, select HDL Coder. The HDL Code tab appears.
Select the DUT Subsystem and then click HDL Code Advisor.

Note You open the HDL Code Advisor and then run checks for the DUT Subsystem that you want to
generate code for. The top level model can contain blocks that are not compatible for HDL code
generation. Running the HDL Code Advisor for the entire model can flag these blocks and your model
as incompatible for HDL code generation.

In the HDL Code Advisor, the left pane lists the folders in the hierarchy. Each folder represents a
group or category of related checks. Expanding the folders shows available checks in each folder.
From the left pane, you can select a folder or an individual check. The HDL Code Advisor displays
information about the selected folder or check in the right pane. The content of the right pane
depends on the selected folder or check. The right pane has a Result subpane that contains a display
area for status messages and other task results.

To learn more about each individual check, right-click that check, and select What's This?.

How to Run Checks In the HDL Code Advisor
In the HDL Code Advisor window, you can run individual checks or a group of checks. To run a check,
Select that check and then click Run This Check. For example, to run the Check for safe model
parameters, select the check box, and then click Run This Check.

In the HDL Code Advisor window, you can run a group of checks within a folder.

1 Select the checks that you want to run.

3 Tutorials

3-8

2 Select the folder that contains these checks and then click Run Selected Checks.

This example shows how to run selected checks in the Model configuration checks folder.

Run Checks for Counter Model
By using this approach, for your counter model, run all checks in these folders:

• Model Configuration checks
• Checks for ports and subsystems
• Checks for blocks and block settings

For this example, you do not need to run the checks in Native Floating Point checks and Industry
standard checks folders. To learn more about these checks, see “HDL Code Advisor Checks”.

For the counter model, the checks display the results as Passed, which means that the model is
compatible for HDL code generation.

 Check HDL Compatibility of Model Using HDL Code Advisor

3-9

Fix HDL Code Advisor Warnings or Failures
In the HDL Code Advisor, if a check fails, the right pane shows the warning or failure information in a
Result subpane. The Result subpane displays model settings that are not compliant. For some tasks,
use the Action subpane to apply the Code Advisor recommended settings.

For example, inside the HDL_DUT Subsystem, consider that you remove the Enable port and
replace this port with a Constant input that has a value of 1.

3 Tutorials

3-10

Now, if you run the Check for infinite and continuous sample time sources check, the HDL Code
Advisor displays this warning.

 Check HDL Compatibility of Model Using HDL Code Advisor

3-11

To apply the model configuration settings that the code generator reported in the Result subpane,
click the Modify Settings button. After you click Modify Settings, the Result subpane reports the
changes that were applied. In this example, the Sample time of the Constant block is reset to -1.
You can now run this check.

Caveats
• If you reference one model in another by using a Model block, the HDL Code Advisor checks the

model configurations or settings of the parent model. To check whether the referenced model is
compatible with HDL code generation, open the HDL Code Advisor for the referenced model, and
then run the checks.

• If you run the checks on masked library blocks in your Simulink model, the Code Advisor cannot
verify whether the blocks inside the library blocks have HDL-compatible settings.

• When you apply Model Advisor checks to your model, it increases the likelihood that your model
does not violate certain modeling standards or guidelines. However, it does not guarantee that the
design is ready for HDL code generation. Make sure that you verify the design by using multiple
methods for HDL code generation readiness.

Generate HDL Code
The counter model is now compatible for HDL code generation. You can generate HDL code for the
HDL_DUT Subsystem, which contains the counter algorithm. To learn how to generate code, see
“Generate HDL Code from Simulink Model” on page 3-13.

See Also
checkhdl | hdlmodelchecker | hdlsetup

More About
• “HDL Code Advisor Checks”
• “Verify Generated Code from Simulink Model Using HDL Test Bench” on page 3-17
• “HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor” on page 3-

22

3 Tutorials

3-12

Generate HDL Code from Simulink Model
In this section...
“Simple Up Counter Model” on page 3-13
“Generate HDL Code” on page 3-14
“View HDL Code Generation Files” on page 3-15
“Verify Generated HDL Code” on page 3-16

This example shows how you can generate HDL code for a simple Counter model. The model is a
simple up counter that counts up from zero to a threshold value and then wraps back to zero. Before
you generate HDL code for this model, it is recommended that you verify the HDL compatibility of
your model by using the HDL Code Advisor. To learn how to:

• Create this counter model, see “Create Simulink Model for HDL Code Generation” on page 3-2.
• Check HDL compatibility of the counter model, see “Check HDL Compatibility of Model Using

HDL Code Advisor” on page 3-7.

By default, HDL Coder creates an hdlsrc folder in the current working folder to generate the HDL
files. Therefore, before you proceed to generate HDL code, make sure that your current working
folder is writeable.

Simple Up Counter Model
Open this model to see a simple up counter. The model counts up from zero to a threshold value and
then wraps back to zero. In this model, the threshold value is set to 15. You can change the threshold
value by changing the value of the Constant block that is input to the count_threshold port. The
Enable signal specifies whether the counter should count up or hold the previous value. The Enable
signal is set to 1 which means that the counter counts upwards continuously.

open_system('hdlcoder_simple_up_counter.slx')
set_param('hdlcoder_simple_up_counter', 'SimulationCommand', 'Update')

 Generate HDL Code from Simulink Model

3-13

Generate HDL Code
To generate code, you use the HDL Code tab in the To open the HDL Code Advisor, Select the DUT
Subsystem and then click HDL Code Advisor.

For the up counter model, the HDL_DUT Subsystem is the DUT. To generate code for the DUT:

1 In the Apps tab, select HDL Coder. The HDL Code tab appears.
2 Select the DUT Subsystem in your model, and make sure that this Subsystem name appears in

the Code for option. To remember the selection, you can pin this option. Click Generate HDL
Code.

By default, HDL Coder generates VHDL code in the target hdlsrc folder.

If you want to generate Verilog code, you can specify this setting in the HDL Code Generation pane
of the Configuration Parameters dialog box. Before you generate code, you can also customize model-
level settings for your design such as enable native floating-point support, generate resource and
traceability reports, use model-level optimizations, and modify other global settings.

To generate Verilog code for the counter model:

1 In the HDL Code tab, click Settings.
2 In the HDL Code Generation pane, for Language, select Verilog. Leave other settings to the

default. Click Apply and then click Generate.

3 Tutorials

3-14

HDL Coder compiles the model before generating code. Depending on model display options such as
port data types, the model can change in appearance after code generation. As code generation
proceeds, HDL Coder displays progress messages in the MATLAB command line with:

• Link to the Configuration Set that indicates the model for which the Configuration Parameters are
applied.

• Links to the generated files. To view the files in the MATLAB Editor, click the links.

The process completes with the message:

HDL Code Generation Complete.

View HDL Code Generation Files
A folder icon for the hdlsrc folder is now visible in the Current Folder browser. To view generated
code and script files, double-click the hdlsrc folder icon. In the folder, you see a file containing the
VHDL or Verilog code, a script to compile the generated code, a synthesis script, and a mapping file.
For example, if you generated code for the symmetric_fir Subsystem, you see these files in the
hdlsrc folder:

• HDL_DUT.vhd: This file is the VHDL code that contains the entity definition and RTL architecture
implementing the up counter that you designed.

 Generate HDL Code from Simulink Model

3-15

Note If you generated Verilog code, you get a HDL_DUT.v file.
• HDL_DUT_compile.do: Mentor Graphics ModelSim compilation script. To invoke this script and

compile the generated VHDL code, you use the vcom command.
• HDL_DUT_synplify.tcl: This file is a Synplify® synthesis TCL script.
• HDL_DUT_map.txt: This report file is a mapping file that generated entities or modules to the

subsystems that generated them. See “Trace Code Using the Mapping File”.
• HDL_DUT_report.html: This file is a HDL Code Generation Check report displays the status of

HDL code generation and any warnings or messages. If HDL code generation fails, you see the
cause of failure in the Check report.

• gm_hdlcoder_simple_up_counter.slx: This file is a generated model that behaviorally
represents the HDL code in the Simulink modeling environment. For more information, see
“Generated Model and Validation Model”.

Verify Generated HDL Code
Before you proceed to deploy your design on the target hardware, you must verify the generated HDL
code. From the hdlsrc folder, navigate to the current working folder. To learn how you can verify the
generated HDL code, see “Verify Generated Code from Simulink Model Using HDL Test Bench” on
page 3-17.

See Also
hdlset_param | hdlsetup | makehdl

More About
• “Create Simulink Model for HDL Code Generation” on page 3-2
• “HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor” on page 3-

22

3 Tutorials

3-16

Verify Generated Code from Simulink Model Using HDL Test
Bench

In this section...
“Simple Up Counter Model” on page 3-17
“How to Verify the Generated Code” on page 3-18
“What is a HDL Test Bench?” on page 3-18
“Generate HDL Test Bench” on page 3-18
“View HDL Test Bench Files” on page 3-20
“Run Simulation and Verify Generated HDL Code” on page 3-20
“Deploy Generated HDL Code on Target Device” on page 3-21

This example shows how to generate a HDL test bench and verify the generated code for your design.
The example assumes that you have already generated HDL code for your model. This example
illustrates how to verify the generated code for a simple up counter. To learn more about this counter
model and how to generate HDL code, see “Generate HDL Code from Simulink Model” on page 3-13.

Note If you haven't already generated HDL code, you can still open this model and generate the HDL
test bench. Before generating the test bench, HDL Coder runs code generation to make sure that
there is at least one successful code generation run before generating the testbench.

Simple Up Counter Model
Open this model to see a simple up counter. The model counts up from zero to a threshold value and
then wraps back to zero. In this model, the threshold value is set to 15. You can change the threshold
value by changing the value of the Constant block that is input to the count_threshold port. The
Enable signal specifies whether the counter should count up or hold the previous value. The Enable
signal is set to 1 which means that the counter counts upwards continuously.

open_system('hdlcoder_simple_up_counter.slx')
set_param('hdlcoder_simple_up_counter', 'SimulationCommand', 'Update')

 Verify Generated Code from Simulink Model Using HDL Test Bench

3-17

How to Verify the Generated Code
This example illustrates how to generate a HDL test bench to simulate and verify the generated HDL
code for your design. You can also verify the generated HDL code from your model using these
methods:

Verification Method For More Information
Validation Model “Generated Model and Validation Model”
HDL Cosimulation (requires HDL Verifier) “Cosimulation”
SystemVerilog DPI Test Bench “SystemVerilog DPI Test Bench”
FPGA-in-the-Loop “FPGA-in-the-Loop”

What is a HDL Test Bench?
To verify the functionality of the HDL code that you generated for the DUT, generate a HDL test
bench. A test bench includes:

• Stimulus data generated by signal sources connected to the entity under test.
• Output data generated by the entity under test. During a test bench run, this data is compared to

the outputs of the VHDL model, for verification purposes.
• Clock, reset, and clock enable inputs to drive the entity under test.
• A component instantiation of the entity under test.
• Code to drive the entity under test and compare its outputs to the expected data.

You can simulate the generated test bench and script files with the Mentor Graphics ModelSim
simulator.

Generate HDL Test Bench
Depending on whether you generated VHDL or Verilog code, generate VHDL or Verilog test bench
code. The test bench code drives the HDL code that you generated for the DUT. By default, the HDL

3 Tutorials

3-18

code and the test bench code are written to the same target folder hdlsrc relative to the current
folder.

For the up counter model, the HDL_DUT Subsystem is the DUT. To generate the testbench, select
this Subsystem. You cannot generate a HDL testbench for an entire model.

1 In the Apps tab, select HDL Coder. The HDL Code tab appears.
2 Select the DUT Subsystem in your model, and make sure that this Subsystem name appears in

the Code for option. To remember the selection, you can pin this option. Click Generate
Testbench.

By default, HDL Coder generates VHDL testbench code in the target hdlsrc folder.

To generate Verilog testbench code for the counter model:

1 In the HDL Code tab, click Settings.
2 In the HDL Code Generation pane, for Language, select Verilog. Leave other settings to the

default.
3 In the HDL Code Generation > Test Benchpane, click Generate Test Bench.

 Verify Generated Code from Simulink Model Using HDL Test Bench

3-19

View HDL Test Bench Files
1 If you haven't already generated code for your model, HDL Coder compiles the model and

generates HDL code before generating the test bench. Depending on model display options such
as port data types, the model can change in appearance after code generation.

As test bench generation proceeds, HDL Coder displays progress messages. The process should
complete with the message

HDL TestBench Generation Complete.
2 After generating the test bench, you see the generated files in the hdlsrc folder. For example, if

you generated a test bench for the HDL_DUT Subsystem in your up counter model, the folder
contains:

• HDL_DUT_tb.vhd: VHDL test bench code, with generated test and output data.

Note If you generated Verilog test bench code, the generated file is HDL_DUT_tb.v.
• HDL_DUT_tb_pkg.vhd: Package file for VHDL test bench code. This file is not generated if

you specified Verilog as the target language.
• HDL_DUT_tb_compile.do: Mentor Graphics ModelSim compilation script (vcom commands).

This script compiles and loads the entity to be tested (HDL_DUT.vhd) and the test bench code
(HDL_DUT_tb.vhd).

• HDL_DUT_tb_sim.do: Mentor Graphics ModelSim script to initialize the simulator, set up
wave window signal displays, and run a simulation.

3 To view the generated test bench code in the MATLAB Editor, double-click the HDL_DUT_tb.vhd
or HDL_DUT_tb.v file in the Current Folder.

Run Simulation and Verify Generated HDL Code
To verify the simulation results, you can use the Mentor Graphics ModelSim simulator. Make sure
that you have already installed Mentor Graphics ModelSim.

To launch the simulator, use the vsim function. This command shows how to open the simulator by
specifying the path to the executable:
vsim('vsimdir','C:\Program Files\ModelSim\questasim\10.6b\win64\vsim.exe')

To compile and run a simulation of the generated model and test bench code, use the scripts that are
generated by HDL Coder. Following example illustrates the commands that compile and simulate the
generated test bench for the hdlcoder_simple_up_counter/HDL_DUT Subsystem.

1 Open the Mentor Graphics ModelSim software and navigate to the folder that has the generated
code files and the scripts.

2 Use the generated compilation script to compile and load the generated model and text bench
code. For example, if you generated a test bench for the hdlcoder_simple_up_counter/
HDL_DUT Subsystem, run this command to compile the generated code.

QuestaSim>do HDL_DUT_tb_compile.do

3 Use the generated simulation script to execute the simulation. The following listing shows the
command and responses. You can ignore any warning messages. The test bench termination

3 Tutorials

3-20

message indicates that the simulation has run to completion without comparison errors. For
example, if you generated a test bench for the hdlcoder_simple_up_counter/HDL_DUT
Subsystem, run this command to simulate the generated code.

QuestaSim>do HDL_DUT_tb_sim.do

The simulator optimizes your design and displays the results of simulating your HDL design in a
wave window. if you don't see the simulation results, open the wave window. The simulation
script displays inputs and outputs in the model including the clock , reset, and clock enable
signals in the wave window.

You can now view the signals and verify that the simulation results match the functionality of your
original design. After verifying, close the Mentor Graphics ModelSim simulator, and then close the
files that you have opened in the MATLAB Editor.

Deploy Generated HDL Code on Target Device
After you verified the functionality of your HDL design, you can deploy the generated code on a
target FPGA device. For deployment, you use the Simulink HDL Workflow Advisor. To learn how more,
see “HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor” on page 3-
22.

See Also
makehdl | makehdltb

More About
• “Test Bench Generation Output”
• “HDL Test Bench”
• “HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor” on page 3-

22

 Verify Generated Code from Simulink Model Using HDL Test Bench

3-21

HDL Code Generation and FPGA Synthesis Using Simulink HDL
Workflow Advisor

In this section...
“Simple Up Counter Model” on page 3-22
“About HDL Workflow Advisor” on page 3-23
“Set Up Tool Path” on page 3-23
“Open the HDL Workflow Advisor” on page 3-24
“Generate HDL Code” on page 3-24
“Perform FPGA Synthesis and Analysis” on page 3-26
“Run Workflow at Command Line with a Script” on page 3-26

This example shows how you can use the HDL Workflow Advisor to generate HDL code and
synthesize your design on a target Xilinx FPGA. For this tutorial, you can use a simple up counter
model that you created as a source for HDL code generation. The model simulates an up counter that
counts from zero to a threshold value and then wraps back to zero. To learn how to create this model,
see “Create Simulink Model for HDL Code Generation” on page 3-2.

Simple Up Counter Model
Open this model to see a simple up counter. The model counts up from zero to a threshold value and
then wraps back to zero. In this model, the threshold value is set to 15. You can change the threshold
value by changing the value of the Constant block that is input to the count_threshold port. The
Enable signal specifies whether the counter should count up or hold the previous value. The Enable
signal is set to 1 which means that the counter counts upwards continuously.

open_system('hdlcoder_simple_up_counter.slx')
set_param('hdlcoder_simple_up_counter', 'SimulationCommand', 'Update')

3 Tutorials

3-22

About HDL Workflow Advisor
The HDL Workflow Advisor guides you through the stages of generating HDL code for a Simulink
subsystem and the FPGA design process, such as:

• Checking the model for HDL code generation compatibility and automatically fixing incompatible
settings.

• Generation of HDL code, a test bench, and scripts to build and run the code and test bench.
• Generation of cosimulation or SystemVerilog DPI test benches and code coverage (requires HDL
Verifier).

• Synthesis and timing analysis through integration with third-party synthesis tools.
• Back-annotation of the model with critical path information and other information obtained during

synthesis.
• Complete automated workflows for selected FPGA development target devices and the Simulink

Real-Time™ FPGA I/O workflow, including FPGA-in-the-loop simulation.

Set Up Tool Path
If you do not want to synthesize your design, but want to generate HDL code, you do not have to set
the tool path. In the HDL Workflow Advisor, on the Set Target > Set Target Device and Synthesis
Tool step, leave the Synthesis tool setting to the default No Synthesis Tool Specified, and
then run the workflow.

If you want to synthesize your design on a target platform, before you open the HDL Workflow
Advisor and run the workflow, set up the path to your Synthesis tool. This example uses Xilinx Vivado,
so you must have already installed Xilinx Vivado. To set the tool path, use the hdlsetuptoolpath
function to point to an installed Xilinx Vivado 2019.1 executable. To learn about the latest supported
tools, see “HDL Language Support and Supported Third-Party Tools and Hardware” on page 1-3.

hdlsetuptoolpath('ToolName','Xilinx Vivado','ToolPath',...
 'C:\Xilinx\Vivado\2019.1\bin\vivado.bat');

 HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor

3-23

Note Optionally, you can use a different synthesis tool of your choice and follow this example. To set
the path to that synthesis tool, use hdlsetuptoolpath.

Open the HDL Workflow Advisor
To start the HDL Workflow Advisor from a Simulink model,

1 In the Apps tab, select HDL Coder. The HDL Code tab appears.
2 Select the DUT Subsystem in your model, and make sure that this Subsystem name appears in

the Code for option. To remember the selection, you can pin this option. Click Workflow
Advisor.

When you open the HDL Workflow Advisor, the code generator can warn that the project folder is
incompatible. To open the Advisor, select Remove slprj and continue.

In the HDL Workflow Advisor, the left pane lists the folders in the hierarchy. Each folder represents a
group or category of related tasks. Expanding the folders shows available tasks in each folder. From
the left pane, you can select a folder or an individual task. The HDL Workflow Advisor displays
information about the selected folder or task in the right pane. The contents of the right pane
depends on the selected folder or task. For some tasks, the right pane contains simple controls for
running the task and a display area for status messages and other task results. For other tasks that
involve setting code or test bench generation parameters, the right pane displays several parameter
and option settings.

To learn more about each individual task, right-click that task, and select What's This?.

To learn more about the HDL Workflow Advisor window, see “Getting Started with the HDL Workflow
Advisor”.

Generate HDL Code
1 In the Set Target > Set Target Device and Synthesis Tool step, for Synthesis tool, select

Xilinx Vivado and select Run This Task.

3 Tutorials

3-24

2 In Set Target Frequency task, specify a “Target Frequency” that you want the design to
achieve. For this example, you can set Target Frequency (MHz) to 200.

3 Leave all settings to default and right-click the Check Sample Times task and select Run to
Selected Task.

By running the tasks in the Prepare Model For HDL Code Generation folder, the HDL
Workflow Advisor checks the model for code generation compatibility.

Note If running a task generates a warning, select Modify All, and rerun the task.
4 To modify code generation options, use the tasks in Set Code Generation Options. For

example, to customize the target HDL language and the target code generation folder, use the
Set Basic Options task. After you make changes, click Apply.

5 To generate code, right-click the Generate RTL Code and Testbench task, and select Run to
Selected Task.

Note If you want to generate an HDL test bench or a validation model, you can specify the
corresponding settings in the Generate RTL Code and Testbench task. To specify additional
test bench options, use the Set Testbench Options task.

 HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor

3-25

Perform FPGA Synthesis and Analysis
1 In the FPGA Synthesis and Analysis > Perform Synthesis and P/R > Perform Place and

Route task, clear Skip this task and click Apply.
2 Right-click Annotate Model with Synthesis Result and select Run to Selected Task.
3 View the annotated critical path in the model.

Note If you select Intel Quartus Pro or Microsemi Libero SoC as the Synthesis tool,
the Annotate Model with Synthesis Result task is not available. In this case, you can run the
workflow to synthesis and then view the timing reports to see the critical path.

Run Workflow at Command Line with a Script
To run the HDL workflow at a command line, you can export the Workflow Advisor settings to a script.
To export to script, in the HDL Workflow Advisor window, select File > Export to Script. In the
Export Workflow Configuration dialog box, enter a file name and save the script.

The script is a MATLAB file that you can run from the command line. You can modify the script
directly or, import the script into the HDL Workflow Advisor, modify the tasks, and export the updated
script. To learn more, see “Run HDL Workflow with a Script”.

See Also
hdladvisor | hdlsetuptoolpath | makehdl

More About
• “Tool Setup” on page 2-2
• “Create Simulink Model for HDL Code Generation” on page 3-2
• “Generate HDL Code from Simulink Model” on page 3-13

3 Tutorials

3-26

	About HDL Coder
	HDL Coder Product Description
	Key Features

	HDL Language Support and Supported Third-Party Tools and Hardware
	VHDL and Verilog Language Support
	Third-Party Synthesis Tools and Version Support
	FPGA-in-the-Loop Hardware
	Simulink Real-Time FPGA I/O: Speedgoat Target Hardware
	Generic ASIC/FPGA Hardware
	IP Core Generation Hardware
	FPGA Turnkey Hardware

	Getting Started with HDL Coder
	Tool Setup
	Synthesis Tool Path Setup
	HDL Simulator Setup
	Xilinx System Generator Setup for ModelSim Simulation
	Altera DSP Builder Setup
	FPGA Simulation Library Setup
	C/C++ Compiler Setup

	Tutorials
	Create Simulink Model for HDL Code Generation
	Open Model and HDL Coder Library
	Develop Design and Test Bench
	Simulate and Verify Functionality of Design
	Check Model for HDL Compatibility

	Check HDL Compatibility of Model Using HDL Code Advisor
	Simple Up Counter Model
	Open the HDL Code Advisor
	How to Run Checks In the HDL Code Advisor
	Run Checks for Counter Model
	Fix HDL Code Advisor Warnings or Failures
	Caveats
	Generate HDL Code

	Generate HDL Code from Simulink Model
	Simple Up Counter Model
	Generate HDL Code
	View HDL Code Generation Files
	Verify Generated HDL Code

	Verify Generated Code from Simulink Model Using HDL Test Bench
	Simple Up Counter Model
	How to Verify the Generated Code
	What is a HDL Test Bench?
	Generate HDL Test Bench
	View HDL Test Bench Files
	Run Simulation and Verify Generated HDL Code
	Deploy Generated HDL Code on Target Device

	HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor
	Simple Up Counter Model
	About HDL Workflow Advisor
	Set Up Tool Path
	Open the HDL Workflow Advisor
	Generate HDL Code
	Perform FPGA Synthesis and Analysis
	Run Workflow at Command Line with a Script

